加载中 ...
首页 > 创业 > 人工智能 > 正文

一份帮助你更好地理解深度学习的资源清单

2018-07-30 15:55:31 来源:深港财经

人工智能和深度学习太火了,火得一塌糊涂,有很多人想从事这个行业。网络上也有很多教程可供大家开始深度学习。如果你完全是一个小白,那么你可以在入行时选择使用极好的斯坦福课程CS221或[CS224](),Fast AI课程或深度学习AI课程。除了深度学习AI之外的课程,其它的课程都可以在家中舒适地免费学习。此外,你只需要一台好的计算机(最好使用Nvidia GPU),就可以正式地迈出深度学习的第一步。

然而,本文内容并没有解决绝对的初学者问题,一旦你对深度学习算法的工作方式有了一些感觉,你可能会想要进一步地了解整个过程是如何运作的。虽然深度学习中的大多数工作是添加像卷积层(Conv2d)这样的层、在ADAM等不同类型的优化策略中更改超参数或者通过编写一行命令来改变使用Batchnorm。深度学习方法一直被人称为是一个“黑匣子”,很多人可能会想知道背后发生的事情。本文是一个资源列表,可能会帮助你了解背后的过程,比方说放置卷积层或在Theano中调用T.grad时发生的过程。

论文|General Treatise

深度学习花书(Deep Learning Book)是最知名的资源,一直占据各大电商相关书籍排行榜的第一位。其他很好的资源是Charniak教授的课程和论文,主要是关于深度学习技术的介绍。如果还想从特定的角度理解事物,还有其他的一些资源可能需要学习。例如,本教程是从应用数学家的角度编写的,如果你只是想在没有任何理论基础的情况下开始编程实践,那么请阅读这个资源。另外推荐的一个资源是关于PyTorch的深度学习课程,该课程将自下而上地对内容进行讨论,帮助你开阔视角。

关于反向传播的问题|Backpropogation

在很多时候,进入深度学习领域前,需要掌握的第一个算法就是反向传播(Backpropogation)算法,这是因为神经网络中的参数更新方法过程大多数是反向传播算法。当你不知道“梯度下降和反向传播有什么关联?”或“链式法则和反向传播究竟是什么?”时,为了理解基础知识,我们可以选择去阅读Rumelhart、Hinton和Williams的原始论文,这篇论文是一篇非常简单易懂的文章。

其他一些非常有用的资源可以在此阅读完原始论文的基础上,进一步阅读Karpathy关于反向推导的博客和解释反向推导的视频。

线性代数和其他数学|Linear Algebra & other Maths

任何有志于学习线性代数的人都会人转向学习Strang教授的课程,这个课程可能是市面上学习线性代数的最佳资源。类似于Boyd教授的优化课程或矢量微积分的微积分书(可以在网络上找到pdf电子版)。 然而,人们并不需要完全地学会这些资源,深度学习所需要的数学知识深度没有那么的深。一个非常好的快速入门方法就是快速地复习一遍所有必备的微积分深度学习课程。还有一套非常好的讲义,该讲义只关注深度学习中使用的凸优化理论。另外一个很好的资源是Sebastian Reuder的论文。

自动微分和深度学习框架|Automatic Differentiation & Deep Learning Libraries

进行深度学习时,自动微分法(Automatic Differentiation)并不是你必须知道的知识。对于大大多数框架而言,比如Torch、Theano或tensorflow都会自动地为你完成这个算法。在大多数情况下,你甚至不必知道如何进行微分,也就是说,如果你决定进一步深入了解深度学习框架的工作原理,那么你可能需要了解自动微分法是如何工作的。了解深度学框架库功能其它的好资源可以在这个博客和视频中找到。

卷积神经网络|Convolutional Neural Networks

当你完成一些使逆能够使用基本神经网络的课程后,你可能需要的最有用的知识是了解卷积处理图像的过程。 “在输入上应用某种类型的卷积后,输出形状是什么?”、“步幅(stride)如何影响卷积?”,“什么是批量标准化(Batch Normalization)?”等类似的内容。我在遇到这些类型的应用问题时,找到的两个最好的资源是该教程和Ian Goodfellow的讨论。如果你有其它的想法,可以在这里对卷积网络进行更全面的评论。这篇关于对象检测的综述性文章是关于卷积神经网络这一主题非常好的资源。

深度学习中的自然语言处理|NLP

之前指出,斯坦福大学C224课程是学习NLP的一个非常好的起点,在学习完该课程之后,应该能够对所有的事情处理得很好。此外,还有Graham Neubig(使用dynet工具包)在youtube上的课程以及Yoav Goldberg的NLP书,还有一份关于NLP进展的综述性文章在此。关于是否在文本上使用CNN或RNN(LSTM / GRU)还有一个公开讨论的问题,这里有一个很好的概述。

强化学习|Reinforcement Learning

sutton和Barto(1998)可以说是强化学习领域的一本圣经,这本书是免费的,可以在这里获取。这个资源提供了一份对最近的深度强化学习方法非常好的回顾,这个资源有关于强化学习的非常有趣的教程。

蒙特卡洛树搜索(Monte Carlo Tree Search)(这是Deepmind除了深度强化学习技术之外的AlphaGo算法的一部分)的详细介绍在此,但我使用一个快速教程来理解它。

其他一些好的综述/教程|reviews & tutorials

关于GAN(生成性对抗网络)和生成模型的一个很好的教程是Goodfellow在ICLR 2016中给出,可以在这里找到。神经网络已被用于迁移艺术(例如在Prisma应用程序中),可以在此处找到有关方法的详细介绍。 Reuder对多任务学习(由同一神经网络组合多个任务)的另外一个很好的调查研究可以在此查看。

评论|Criticisms

尽管深度学习在多个任务上的表现十分出色,但我们自己心里清楚,还有一些地方尚未明确或效果不好。一些好的评论是Shalev-Shwartz等人关于基于梯度学习算法的失败,还有在Hinton大牛的演讲中列举出的一些关于卷积神经网络的问题,以及卷积神经网络如何解读它们所训练的图像的负面影响。此处的一个评论在几天之后就变成了病毒性/争议性的话题,还有关于恶意使用深度学习的广泛报道。

对抗性样本|Adversarial Examples

对抗样本是一个制造人工/真实数据点的巨大领域,制作出的样本可以欺骗卷积神经网络。我本可以把这部分放在评论部分,但由于以下原因没有进行这样的处理:

它们不是所有应用程序的技术挑战我对其的了解并不是很好。一个非常酷的生成“对抗对象”来欺骗神经网络案例在此,感兴趣的读者可以研究下。

你还可以阅读有关你应该了解的机器学习算法,以便成为数据科学家。

作者信息

Muktabh Mayank,数据科学家和企业家

LinkedIn:https://www.linkedin.com/in/muktabh/

文章原标题《Best (and Free!!) Resources to Understand Nuts and Bolts of Deep Learning》,译者:海棠

本文来源:深港财经责任编辑:佚名

本文仅代表作者个人观点,与本网站立场无关。云掌财经对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证,请读者仅作参考,并请自行核实相关内容。

  • 【 景气度处于高位 机械板块估值修复可期 】 近期,工程机械板块跟随市场调整,走势一般,但行业景气度仍在高位运行。有分析人士认为,随着基础设施建设不断发力,产品更新换代需求及出口持续向好等,工程机械行业持续火热,行业整体盈利水平逐步上升。基于业绩确定性,工程机械板块仍是后市关注重点。(中国证券报)

    2018-10-13
  • 【聚焦“ABC” 互联网争霸进入下半场】日前,港股上市公司腾讯控股6年来首次宣布调整内部构架,新成立云与智慧产业事业群、平台与内容事业群,并压缩原有事业群。外界解读公司此举是为了将人工智能、大数据和云计算提升到更核心的战略位置。事实上,不仅腾讯,国内百度、小米、阿里巴巴,国外谷歌、亚马逊等互联网巨头近年均调整组织架构,意在适应“ABC”变革。分析人士称,“ABC”已成互联网巨头决胜下半场的关键。

    2018-10-13
  • 【证监会:受理首发及发行存托凭证企业271家 已过会32家未过会239家】证监会披露的数据显示,截至10月11日,中国证监会受理首发及发行存托凭证企业271家,其中已过会32家,未过会239家。未过会企业中正常待审企业217家,中止审查企业22家。

    2018-10-13
  • 【 聚焦“ABC” 互联网争霸进入下半场 】 日前,港股上市公司腾讯控股6年来首次宣布调整内部构架,新成立云与智慧产业事业群、平台与内容事业群,并压缩原有事业群。外界解读公司此举是为了将人工智能(AI)、大数据(BIG DATA)和云计算(CLOUD)提升到更核心的战略位置。事实上,不仅腾讯,国内百度、小米、阿里巴巴,国外谷歌、亚马逊等互联网巨头近年均调整组织架构,意在适应“ABC”变革。分析人士称,“ABC”已成互联网巨头决胜下半场的关键。(中国证券报)

    2018-10-13
  • 【 证监会:受理首发及发行存托凭证企业271家 已过会32家未过会239家 】 证监会披露的数据显示,截至10月11日,中国证监会受理首发及发行存托凭证企业271家,其中已过会32家,未过会239家。未过会企业中正常待审企业217家,中止审查企业22家。

    2018-10-13
  • 【逢低吸筹茅台格力等 北向资金昨日净流入10.73亿元】 北向资金节后开盘以来的浓厚避险情绪,终于在本周最后一个交易日有所缓解。伴随着A股的止跌反弹,截至12日收盘,借道沪股通、深股通的境外资金合计净流入10.73亿元,一举扭转了此前连续大幅净卖出的局面。曾遭北向资金大幅抛售的活跃标的个股,也悉数恢复了净流入态势。本周前4个交易日遭净卖出9208万元的格力电器,周五获净买入1.56亿元。洋河股份、泸州老窖和大华股份周五也获得小幅净流入。

    2018-10-13
  • 【中证报:悲观预期必将修正 优质资产终会引领风潮】突如其来的海外市场动荡,打乱了A股9月下旬发动的上行攻势。在“过山车”似的走势背后,当下A股市场对利空的敏感暴露无遗,本质上这是经济悲观预期作祟。国际经济金融形势更加错综复杂,然而经过今年以来的逐步调整,A股对潜在风险的反映已经比较充分。优质资产在超跌之后,终将迎来修复契机。

    2018-10-13
  • 【财政部表态减税力度将扩大 增值税税率调整随时出台】据悉,对于增值税改革的工作,目前相关部门也已启动,包括税率合并以及下调等事宜都在进行测算。“此前税务机关曾找第三方机构测算税率下调后的影响,因此年内有可能随时出台政策。”一位税务系统人士判断。(中国经营报)

    2018-10-13
  • 【墨西哥经济部长:将寻求获得加拿大钢铝产品保护性措施的豁免】墨西哥经济部长瓜哈尔多表示,将致电加拿大方面,寻求获得加拿大钢铝产品保护性措施的豁免;预计加拿大的钢铝产品贸易保护性措施将给墨西哥钢铝出口带来2亿美元影响。

    2018-10-13
  • 【9月房企融资成本达2017年下半年以来峰值】据不完全统计,2018年1-9月典型85家房企融资总额8287亿元,同比减少11%。43%的房企融资额同比有所减少。下半年以来TOP50之后有发债的房企只有5家,中小企业融资难问题更加显著。从单月来看,2018年春节以来房企的各月平均融资成本,除6月外,基本都较上年同期有所增加。9月整体融资成本反弹至6.91%,达到去年下半年以来的最高值,房企融资成本的增加预计将进一步限制融资规模的增长。(克而瑞地产研究)

    2018-10-13