观色知喜怒:麻省理工成功开发情绪解读机器学习模型
在不断发展的「情感计算」领域,用于分析面部表情、解读我们的情绪、并做出相应反应的机器人和计算机不断被开发出来。例如一些应用,包括:监测个人健康、观察学生上课的兴致、辅助诊断疾病病征,以及开发陪伴型机器人。
由于各种因素,人们表达情感的方式完全不同,这给情感计算带来一大挑战。文化、性别和年龄的不同,造成了这种普遍的差异。但其它的差异则更为细致:时间、睡眠状况、甚至你对交谈对象的熟悉程度,都会导致你在特定时刻表达快乐或悲伤的方式发生细微的变化。
人类的大脑可以本能地捕捉到这些偏差,但机器却不行。近年来,深度学习技术的发展帮助人们理解了其中的微妙之处,但这些技术在不同的人群中仍不准确且适应性不强。
媒体实验室的研究人员现已开发出一种机器学习模型,它在捕捉这些细微的面部表情变化时超越了传统系统。为了更好解读情绪,已在该模型上训练了数千张人脸图像。此外,通过额外的数据训练,这个模型在全新的人群中也同样有效。其目的是改进现有的情感计算技术。
「它以不引人注目的方式来监控我们的情绪,」Oggi Rudovic 说:「如果想让机器人具有社会智能,就必须让它们像人一样自然地对我们的情绪作出反应。」Oggi Rudovic 是媒体实验室的研究员,也是此论文的合著者,该论文上周在 MLDM(机器学习与数据挖掘)会议上发表。
论文的共同作者有:第一作者 Michael Feffer,电气工程和计算机科学的本科生;Rosalind Picard,媒体艺术与科学的教授,情感计算研究小组的创始人。
个性化的『专家』
传统的情感计算模型采用「一刀切」的概念。他们训练一组描述各种面部表情的图像,优化特征——比如微笑时嘴唇如何卷曲——并把这些特征映射到一组全新的图像中。
而在本文的研究中,研究人员将「多专家模型」(MoE) 技术与模型个性化技术结合在一起,这种技术有助于从个体中挖掘出更细粒度的面部表情数据。Rudovic 说,这是首次将两种技术结合到一起进行情感计算。
在「多专家模型」中,许多被称为「专家」的神经网络模型被训练成专门处理一个单独任务并产生一个输出。研究人员还加入了一个「门限网络」,计算出哪位「专家」能最好地检测到未被发现的受试者的情绪。Feffer 说:「网络基本可以区分个体,并指出『这是给定图像的正确专家』。」
在他们的模型中,研究人员通过将每个专家与 RECOLA 数据库中 18 个独立视频记录中的一个进行匹配,从而对 MoEs 进行个性化设置。RECOLA 是一个公共数据库,内容是人们为情感计算应用设计的视频聊天平台上的对话。他们用 9 个实验对象训练该模型,并在其他 9 个实验对象上进行评估,所有的视频都被分解成单个的帧。
每个专家和门控网络都在残差网络(ResNet,用于分类的神经网络)的帮助下跟踪每个人的面部表情。在此过程中,模型根据情绪效价(高兴或难过)和情绪唤醒(兴奋)程度——对不同情绪进行编码的指标——对每一帧进行评分。另外,六名人类专家给每一帧情绪效价与唤醒做了标注,标注打分范围从-1(低)到 1(高),此模型也会被用于训练。
然后研究人员进行了进一步的模型个性化实验,在实验中,他们喂给模型的数据是剩余视频的部分帧,然后用视频中未出现过的帧来测试模型。结果显示只有 5% 到 10% 的数据来自新人群,这个模型在很大程度上优于传统模型——即它在未出现的图像上对情绪效价和唤醒的评测水平更接近人类专家的标注。
「这显示了模型在数据很少的情况下,从人群到人群或者从个人到个人的适应能力。」Rudovic 说,「这是关键,当出现新的人群时,必须要有方法来解释数据分布的变化(微表情变化)。一个模型分析一种文化下的表情时,它也需要适应不同的文化。如果不考虑这种数据转移,模型就会表现不佳。但如果只是从一种新的文化中抽取一些样本来适应我们的模型,那这些模型可以做得更好,尤其是在个人层面上。这就是模型个性化最重要的地方。」
当前可获得的情感计算研究数据在肤色方面不够多样,因此研究者的训练数据受到限制。如果可以获得更多样的数据,训练后的模型就能用于更多元的人群。Fetter 表示,下一步就是在「一个包含多元文化的更大数据集」上训练模型。
更佳的人机交互
研究者表示,另一个目标是训练模型,帮助计算机和机器人从少量变化的数据中自动学习,以更自然的方法对人的情感进行检测,从而更好地满足人类需求。
例如,它可以在计算机或移动设备中运行,跟踪用户的视频对话,学习不同背景下微妙的面部表情变化。Feffer 说,「你可以根据智能手机或网站来了解人们的感受,推荐应对压力或痛苦的方法,并找出对他们生活产生负面影响的其它东西。」
另外,这也有助于监测抑郁症或痴呆症,因为人们的面部表情会因为这些情况而发生微妙的变化。Rudovic 说,「我们可以通过长期监控用户的表情来为他们定制个性化模型,并监控他们每天有多少偏差——偏离了面部表情的平均水平——并将其用作健康和幸福的指标。」
Rudovic 说,比较有前景的应用是人机交互,如个人机器人或教育机器人,机器人需要适应评估很多人的情绪状态。例如,有一种版本被用来帮助机器人更好地解读自闭症儿童的情绪。
Roddy Cowie 是贝尔法斯特女王大学心理学名誉教授,同时也是一位情感计算学者,他表示,MIT 的研究「说明了这个领域的研究现状」。「我们正慢慢打造一个系统,这个系统可以从面部照片判断出人们的情绪,从非常积极到非常消极,从非常主动到非常被动。直观说来,一个人给出的情感信号与另一个人的不同,因此当我们使情感识别个性化时,它能更好地工作,这很有意义。个性化方法反映出另一个有趣的点,即训练多个『专家』并综合它们的判断比训练一个单独的超级专家要更加有效。二者合在一起可以构成一个令人满意的组合。」他说。
本文来源:深港财经责任编辑:佚名
本文仅代表作者个人观点,与本网站立场无关。云掌财经对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证,请读者仅作参考,并请自行核实相关内容。
-
【 景气度处于高位 机械板块估值修复可期 】 近期,工程机械板块跟随市场调整,走势一般,但行业景气度仍在高位运行。有分析人士认为,随着基础设施建设不断发力,产品更新换代需求及出口持续向好等,工程机械行业持续火热,行业整体盈利水平逐步上升。基于业绩确定性,工程机械板块仍是后市关注重点。(中国证券报)
2018-10-13 -
【聚焦“ABC” 互联网争霸进入下半场】日前,港股上市公司腾讯控股6年来首次宣布调整内部构架,新成立云与智慧产业事业群、平台与内容事业群,并压缩原有事业群。外界解读公司此举是为了将人工智能、大数据和云计算提升到更核心的战略位置。事实上,不仅腾讯,国内百度、小米、阿里巴巴,国外谷歌、亚马逊等互联网巨头近年均调整组织架构,意在适应“ABC”变革。分析人士称,“ABC”已成互联网巨头决胜下半场的关键。
2018-10-13 -
【证监会:受理首发及发行存托凭证企业271家 已过会32家未过会239家】证监会披露的数据显示,截至10月11日,中国证监会受理首发及发行存托凭证企业271家,其中已过会32家,未过会239家。未过会企业中正常待审企业217家,中止审查企业22家。
2018-10-13 -
【 聚焦“ABC” 互联网争霸进入下半场 】 日前,港股上市公司腾讯控股6年来首次宣布调整内部构架,新成立云与智慧产业事业群、平台与内容事业群,并压缩原有事业群。外界解读公司此举是为了将人工智能(AI)、大数据(BIG DATA)和云计算(CLOUD)提升到更核心的战略位置。事实上,不仅腾讯,国内百度、小米、阿里巴巴,国外谷歌、亚马逊等互联网巨头近年均调整组织架构,意在适应“ABC”变革。分析人士称,“ABC”已成互联网巨头决胜下半场的关键。(中国证券报)
2018-10-13 -
【 证监会:受理首发及发行存托凭证企业271家 已过会32家未过会239家 】 证监会披露的数据显示,截至10月11日,中国证监会受理首发及发行存托凭证企业271家,其中已过会32家,未过会239家。未过会企业中正常待审企业217家,中止审查企业22家。
2018-10-13 -
【逢低吸筹茅台格力等 北向资金昨日净流入10.73亿元】 北向资金节后开盘以来的浓厚避险情绪,终于在本周最后一个交易日有所缓解。伴随着A股的止跌反弹,截至12日收盘,借道沪股通、深股通的境外资金合计净流入10.73亿元,一举扭转了此前连续大幅净卖出的局面。曾遭北向资金大幅抛售的活跃标的个股,也悉数恢复了净流入态势。本周前4个交易日遭净卖出9208万元的格力电器,周五获净买入1.56亿元。洋河股份、泸州老窖和大华股份周五也获得小幅净流入。
2018-10-13 -
【中证报:悲观预期必将修正 优质资产终会引领风潮】突如其来的海外市场动荡,打乱了A股9月下旬发动的上行攻势。在“过山车”似的走势背后,当下A股市场对利空的敏感暴露无遗,本质上这是经济悲观预期作祟。国际经济金融形势更加错综复杂,然而经过今年以来的逐步调整,A股对潜在风险的反映已经比较充分。优质资产在超跌之后,终将迎来修复契机。
2018-10-13 -
【财政部表态减税力度将扩大 增值税税率调整随时出台】据悉,对于增值税改革的工作,目前相关部门也已启动,包括税率合并以及下调等事宜都在进行测算。“此前税务机关曾找第三方机构测算税率下调后的影响,因此年内有可能随时出台政策。”一位税务系统人士判断。(中国经营报)
2018-10-13 -
【墨西哥经济部长:将寻求获得加拿大钢铝产品保护性措施的豁免】墨西哥经济部长瓜哈尔多表示,将致电加拿大方面,寻求获得加拿大钢铝产品保护性措施的豁免;预计加拿大的钢铝产品贸易保护性措施将给墨西哥钢铝出口带来2亿美元影响。
2018-10-13 -
【9月房企融资成本达2017年下半年以来峰值】据不完全统计,2018年1-9月典型85家房企融资总额8287亿元,同比减少11%。43%的房企融资额同比有所减少。下半年以来TOP50之后有发债的房企只有5家,中小企业融资难问题更加显著。从单月来看,2018年春节以来房企的各月平均融资成本,除6月外,基本都较上年同期有所增加。9月整体融资成本反弹至6.91%,达到去年下半年以来的最高值,房企融资成本的增加预计将进一步限制融资规模的增长。(克而瑞地产研究)
2018-10-13